skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Li, Bofan"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Vital signs monitoring has gained increasing attention due to its ability to indicate various human health and well-being conditions. The development of WiFi sensing technologies has made it possible to monitor vital signs using ubiquitous WiFi signals and devices. However, most existing approaches are dedicated to single-person scenarios. A few WiFi sensing approaches can achieve multi-person vital signs monitoring, whereas they are not identity-aware and sensitive to interferences in the environment. In this paper, we propose SpaceBeat, an identity-aware and interference-robust multi-person vital sign monitoring system using commodity WiFi. In particular, our system separates multiple people and locates each person in the spatial domain by leveraging multiple antennas. We analyze the change of signals at the location of each person to achieve identity-aware vital signs monitoring. We also design a contrastive principal component analysis-contrastive learning framework to mitigate interferences caused by other moving people. We evaluate SpaceBeat in various challenging environments, including interference scenarios, non-line-of-sight scenarios, different distances, etc. Our system achieves an average accuracy of 99.1% for breathing monitoring and 97.9% for heartbeat monitoring. 
    more » « less